Numerical Calibration of Steiner trees

نویسندگان

  • Annalisa Massaccesi
  • Edouard Oudet
  • Bozhidar Velichkov
چکیده

In this paper we propose a variational approach to the Steiner tree problem, which is based on calibrations in a suitable algebraic environment for polyhedral chains which represent our candidates. This approach turns out to be very efficient from numerical point of view and allows to establish whether a given Steiner tree is optimal. Several examples are provided.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Steiner minimal trees in Euclidean d-space

In this paper, we propose modifications on Smith’s branch-and-bound (B&B) algorithm for the Euclidean Steiner problem in R. At each node of the B&B tree, we solve a convex programming problem in conic form to obtain a lower bound on the minimal Steiner tree length for a given topology. We also use conic formulation to obtain bounds on the child problems at a given node, that are applied on a st...

متن کامل

Multicriteria Steiner Tree Problem for Communication Network

This paper addresses combinatorial optimization schemes for solving the multicriteria Steiner tree problem for communication network topology design (e.g., wireless mesh network). The solving scheme is based on several models: multicriteria ranking, clustering, minimum spanning tree, and minimum Steiner tree problem. An illustrative numerical example corresponds to designing a covering long-dis...

متن کامل

Approximate Euclidean Steiner Trees

An approximate Steiner tree is a Steiner tree on a given set of terminals in Euclidean space such that the angles at the Steiner points are within a specified error from 120◦. This notion arises in numerical approximations of minimum Steiner trees. We investigate theworst-case relative error of the length of an approximate Steiner tree compared to the shortest tree with the same topology. It ha...

متن کامل

Approximating Minimum Steiner Point Trees in Minkowski

Given a set of points, we define a minimum Steiner point tree to be a tree interconnecting these points and possibly some additional points such that the length of every edge is at most 1 and the number of additional points is minimized. We propose using Steiner minimal trees to approximate minimum Steiner point trees. It is shown that in arbitrary metric spaces this gives a performance differe...

متن کامل

On the configuration space of Steiner minimal trees

Among other results, we prove the following theorem about Steiner minimal trees in ddimensional Euclidean space: if two finite sets in R have unique and combinatorially equivalent Steiner minimal trees, then there is a homotopy between the two sets that maintains the uniqueness and the combinatorial structure of the Steiner minimal tree throughout the homotopy.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017